❶ 基坑監測用什麼儀器
問題一:基坑在線監測需要用到哪些設備? 基坑監測中 感測器部分 表面位移監測可以用GPS,或者靜力水準儀;深部位移監測可以用固定式測斜儀,或者多點位移計;地下水位監測可以用滲壓計;周邊建築物變形監測可以用GPS,或者固定式測斜盒,或者靜力水準儀,或者裂縫計;應力應變監測可能用到的有應變計,土壓力計,鋼筋計,軸力計。採集設備有攜帶型讀數儀,還有自動採集儀。我們用過華測智創的,可以咨詢下。
問題二:基坑監測需要那些測量儀器 全站儀一套就解決了
問題三:關於基坑水平移位監測具體要怎麼做,用什麼儀器,詳細點 30分 根據基坑支護方案中監測測要求,在基坑周圍典型特徵點埋設變形監測點,並選好觀測基點。觀測基點要求必須牢固可靠,與監測點通視條件要好無遮擋。編制好監測記錄表,記錄表中除有觀測時間、監測點坐標、位移值、累計位移值等,在醒目位置標示報警值。最好採用全站儀,同時要求固定人員及儀器,中途不要換人換儀器,以此消除偶然誤差。先期觀測頻率高,後期均衡觀測。
問題四:基坑監測的設備技術 基坑監測儀器設備及技術措施5.1 儀器設備本項目投入儀器設備見表5-1:表5-1 使用儀器設備一覽表 序號 儀器名稱 數量 精度 1 蘇州一光DS05水準儀 1台 ≤0.5mm 2 南方NTS-350全站儀 1台 5mm+3ppm、±2 3 測讀計 1台 2 銦鋼水準標尺 2把 ±0.02mm 3 測斜儀 1台 ±0.1mm 4 水位計 1台 ±1mm 5 卡尺 1把 ±1mm 6 辦公電腦 1台 7 列印機 1台 5.2 監測精度在監測工作中,監測精度應滿以下要求:1、高程採用水準測量,進行閉合路線或往返耐租培觀測:按照要求水準每站觀測高程中誤差為+0.5mm,每月對水準每站進行檢測,檢測結果中誤差均小於+0.2mm。水準附合路線,其附合差為±1.0√Nmm(N為測站數);2、基坑圍護樁體測斜誤差≤0.5mm;3、平面位移監測誤差≤1mm;4、根據要求水準儀「i」角不大於6秒;所以我們每月對水準儀進行「i」角檢測,控制「i」角在6秒內。5.3 質量保證措施1、認真執行我公司ISO9001質量保證體系文件。2、對參與本工程的人員進行詳細技術和質量交底,明確各監測人員職責。3、經常和業主、監理、施工方聯系,提供監測資料昌唯,及時將情況反饋到各方面。4、對投入使用的儀器定期檢校,確保採集的數據真實、可靠。5、積極主動保護監測點。
問題五:基坑工程監測項目包括哪些 建築基坑工程監測方案包括:
1、工程概況。
2、建設場地型雹岩土工程條件及基坑周邊環境狀況。
3、監測目的和依據。
4、監測內容及項目。
5、基準點、監測點的布設與保護。
6、監測方法及精度。
7、監測期和監測頻率。
8、監測報警及異常情況下的監測措施。
9、監測數據處理與信息反饋。
10、監測人員的配備。
11、監測儀器設備及檢定要求。
12、作業安全及其他管理制度。
問題六:基坑塔吊監控量測如何監測?有啥方法需要用什麼儀器? 一般就是打混凝土之前檢查鋼筋和基礎大小,以及打混凝土的時候,做試塊送到質檢站做混凝土強度檢測
問題七:要測定基坑側壁不同深度處的水平位移,用到哪個儀器 一般用測斜儀。
測斜儀是用來監測滑坡、堤壩、深基坑和隧道等工程建築物地下變形狀況的設備。
測斜管安裝在一個垂直的鑽孔中,該鑽孔穿過可能產生移動的地層直達穩定的地層。
測斜儀實際上就是測量測斜管的位移。第一次測量時得到測斜管位置的初始值。當發生位移時,測量值將與初始值有一個差值,通過這個差值就能判斷是否發生位移。
問題八:在進行基坑監測時,要測定基坑側壁不同深度處的水平位移,用到哪個儀器 預埋測斜管,基坑開挖期間用測斜儀測量。
問題九:基坑的監測要求 監測項目4.1 一 般 規 定4.1.1 基坑工程的現場監測應採用儀器監測與巡視檢查相結合的方法。4.1.2 基坑工程現場監測的對象包括:1 支護結構;2 相關的自然環境;3 施工工況;4 地下水狀況;5 基坑底部及周圍土體;6 周圍建(構)築物;7 周圍地下管線及地下設施;8 周圍重要的道路;9 其他應監測的對象。4.1.3 基坑工程的監測項目應抓住關鍵部位,做到重點觀測、項目配套,形成有效的、完整的監測系統。監測項目尚應與基坑工程設計方案、施工工況相配套。4.2 儀 器 監 測4.2.1 基坑工程儀器監測項目應根據表4.2.1進行選擇。4.2.2 當基坑周圍有地鐵、隧道或其它對位移(沉降)有特殊要求的建(構)築物及設施時,具體監測項目應與有關部門或單位協商確定。4.3 巡 視 檢 查4.3.1 基坑工程整個施工期內,每天均應有專人進行巡視檢查。4.3.2 基坑工程巡視檢查應包括以下主要內容:1 支護結構(1)支護結構成型質量;(2) 冠梁、支撐、圍檁有無裂縫出現;(3)支撐、立柱有無較大變形;(4)止水帷幕有無開裂、滲漏;(5)牆後土體有無沉陷、裂縫及滑移;(6)基坑有無涌土、流砂、管涌。2 施工工況(1)開挖後暴露的土質情況與岩土勘察報告有無差異;(2)基坑開挖分段長度及分層厚度是否與設計要求一致,有無超長、超深開挖;(3)場地地表水、地下水排放狀況是否正常,基坑降水、回灌設施是否運轉正常;(4)基坑周圍地面堆載情況,有無超堆荷載。3 基坑周邊環境(1)地下管道有無破損、泄露情況;(2)周邊建(構)築物有無裂縫出現;(3)周邊道路(地面)有無裂縫、沉陷;(4)鄰近基坑及建(構)築物的施工情況。4 監測設施(1)基準點、測點完好狀況;(2)有無影響觀測工作的障礙物;(3)監測元件的完好及保護情況。5 根據設計要求或當地經驗確定的其他巡視檢查內容。4.3.4 巡視檢查的檢查方法以目測為主,可輔以錘、釺、量尺、放大鏡等工器具以及攝像、攝影等設備進行。4.3.5 巡視檢查應對自然條件、支護結構、施工工況、周邊環境、監測設施等的檢查情況進行詳細記錄。如發現異常,應及時通知委託方及相關單位。4.3.6 巡視檢查記錄應及時整理,並與儀器監測數據綜合分析。監 測 點 布 置5.1 一 般 規 定5.1.1 基坑工程監測點的布置應最大程度地反映監測對象的實際狀態及其變化趨勢,並應滿足監控要求。5.1.2 基坑工程監測點的布置應不妨礙監測對象的正常工作,並盡量減少對施工作業的不利影響。5.1.3 監測標志應穩固、明顯、結構合理,監測點的位置應避開障礙物,便於觀測。5.1.4 在監測對象內力和變形變化大的代表性部位及周邊重點監護部位,監測點應適當加密。5.1.5 應加強對監測點的保護,必要時應設置監測點的保護裝置或保護設施。5.2 基 坑 及 支 護 結 構5.2.1 基坑邊坡頂部的水平位移和豎向位移監測點應沿基坑周邊布置,基坑周邊中部、陽角處應布置監測點。監測點間距不宜大於20m,每邊監測點數目不應少於3個。監測點宜設置在基坑邊坡坡頂上。5.2.2 圍護牆頂部的水平位移和豎向位移監測點應沿圍護牆的周邊布置,圍護牆周邊中部、陽角處應布置監測點。監測點間距不宜大於20m,每邊監測點數目不應少於3個。監測點宜設置在冠樑上。5.2.3 深層水平位移監測孔宜布置在基坑邊坡、圍護牆周邊的中心處及代表性的部位,數量和間距視具體情況而定,但每邊至少應設1......>>
問題十:基坑支護及樁基施工需要配備哪些試驗和檢測儀器 基坑支護用到的,預應力張拉試驗,設備液壓千斤頂,樁基需要進行單樁承載力及低應變檢測,如果是CFG樁,要檢測復合承載力,一般由建設單位聘請具有檢測資質的第三方機構檢測
❷ 工程基坑監測和建築物沉降觀測分別是什麼
1、基坑監測為基坑工程施工中的一個重要環節,指在基坑開挖及地下工程施工過程中,對基坑岩土性狀、支護結構變位和周圍環境條件的變化,進行各種觀察及分析工作,並將監測結果及時反饋,
預測進一步施工後將導致的變形及穩定狀態的發展,根據預測判定施工對周圍環境造成影響的程度,來指導設計與施工,實現所謂信息化施工。
2、沉降觀測即根據建築物設置的觀測點與固定(永久性水準點)的測點進行觀測,測其沉降程度用數據表達,凡一層以上建築、構築物設計要求設置觀測點,人工、土地基(砂基礎)等,均應設置沉陷觀測,施工中應按期或按層進度進行觀測和記錄直至竣工。
(2)紹興什麼是基坑監測圖片擴展閱讀
基坑監測基本要求
1、基坑監測應由委託方委託具備相應資質的第三方承擔。
2、基坑圍護設計單位及相關單位應提出監測技術要求。
3、監測單位監測前應在現場踏勘和收集相關資料基礎上,依據委託方和相關單位提出的監測要求和規范、規程規定編制詳細的基坑監測方案,監測方案須在本單位審批的基礎上報委託方及相關單位認可後方可實施。
4、基坑工程在開挖和支撐施工過程中的力學效應是從各個側面同時展現出來的,在諸如圍護結構變形和內力、地層移動和地表沉降等物理量之間存在著內在的緊密聯系,因此監測方案設計時應充分考慮各項監測內容間監測結果的互相印證、互相檢驗,從而對監測結果有全面正確的把握。
5、監測數據必須是可靠真實的,數據的可靠性由測試元件安裝或埋設的可靠性、監測儀器的精度、可靠性以及監測人員的素質來保證。監測數據真實性要求所有數據必須以原始記錄為依據,原始記錄任何人不得更改、刪除。
6、監測數據必須是及時的,監測數據需在現場及時計算處理,計算有問題可及時復測,盡量做到當天報表當天出。因為基坑開挖是一個動態的施工過程,只有保證及時監測,才能有利於及時發現隱患,及時採取措施。
7、埋設於結構中的監測元件應盡量減少對結構的正常受力的影響,埋設水土壓力監測元件、測斜宏尺管和分層沉降管時的回填土應注意與土介質的匹配。
8、對重要的監測項目,應按照工程具體情況預先設定預警值和報警制度,預警值應包括變形或內力量值及其變化速率。但目前對警戒值的確定還缺乏統一的定量化指標和判別准則,這在一定程度上限制和削弱了報警的有效性。
9、基坑監測應整理完整的監測記錄表、數據報表、形象的圖表和曲線,監測結束後整理出監測報告。薯輪
沉降觀測要點
水準基點的設置:基點設置以保證其穩定可靠為原則,宜設置在基岩上,或設置在壓縮性較低的土層上。水準基點的位置,宜靠近觀測對象,但必須在建築物所產生的壓力影響蔽手高范圍外。
觀測點的設置:觀測點的布置,應能全面反映建築的變形並結合地質情況確定,數量不宜少於6個點。
測量宜採用精密水平儀及鋼水準尺,對第一觀測對象宜固定測量工具和固定測時人員,觀測前應嚴格校驗儀器。
測量精度宜採用Ⅱ級水準測量,視線長度宜為20~30m,視線高度不宜低於0.3m。
觀測時應登記氣象資料,觀測次數和時間應根據具體建築確定。在基坑較深時,可考慮開挖後的回彈觀測。
❸ 基坑檢驗的內容
基坑檢驗的激圓氏內容:
①檢查基底平面位置、尺寸大小、基底標高。
②檢查基底地質情況和承載能力是否與設計資料相符。
③檢查基底處理和排水情況是否符合規范要求。
④檢查施工日誌及有關試驗資料等。
基坑是在基礎設計位置按基底標高和基礎平面尺寸所開挖的土坑。開挖前應根據地質水文資料,結合現場附近建築物情況,決定開挖明散方案,並作好防水排水工作。開挖不深者可用放邊坡的辦法,使土坡穩定,其坡度大小按有關施工規定確定。
開挖較深及鄰近有建築物者,可用基坑壁支護方法,噴射混凝土護壁方法,大型基坑甚至採用地下連續牆和柱列式鑽孔灌注樁連鎖等方法,防護外側土層坍入;在附近建築無影響者,可用井點法降低地下水位,採用放坡明挖;在寒冷地區可採用天然冷氣凍結法開挖等等。
(3)紹興什麼是基坑監測圖片擴展閱讀:
基坑分級:
一級:重要工程或支護結構做主體結構的一部分,開挖深腔段度大於10米,與臨近建築物、重要設施的距離在開挖深度以內的基坑,基坑范圍內有歷史文物、近代優秀建築、重要管線等需要嚴加保護的基坑。
二級:介於一級基坑、三級以外的基坑。
三級:開挖深度小於7米且周圍環境無特殊要求的基坑。
基坑屬於臨時性工程,其作用是提供一個空間,使基礎的砌築作業得以按照設計所指定的位置進行。基坑開挖工程量按基坑容積計算。一般來說,深基坑是指開挖深度大於等於5m的基坑。基坑開挖的計算公式如下:
1.不放坡不支擋土板:此時的基坑是一個長方體或者圓柱體。
(1)當為長方體時:挖基坑工程量 = (a+2c)(b+2c)h
(2)當為圓柱體時:挖基坑工程量 = π*r*r*h
2.放坡:此時的基坑是一個稜台或者圓台。
(1)當為稜台時:挖基坑工程量 = (a+2c+Kh)(b+2c+Kh)h+1/3 K*K*h*h*h
(2)當為圓台時:挖基坑工程量 = 1/3 πH(r*r+rR+R*R)
❹ 基坑的監測要求
監測項目
4.1 一 般 規 定
4.1.1 基坑工程的現場監測應採用儀器監測與巡視檢查相結合的方法。
4.1.2 基坑工程現場監測的對象包括:毀蠢1 支護結構;2 相關的自然環境;3 施工工況;4 地下水狀況;5 基坑底部及周圍土體;6 周圍建(構)築物;7 周圍地下管線及地下設施;8 周圍重要的道路;9 其他應監測的對象。
4.1.3 基坑工程的監測項目應抓住關鍵部位,做到重點觀測、項目配套,形成銷余御有效的、完整的監測系統。監測項目尚應與基坑工程設計方案、施工工況相配套。
4.2 儀 器 監 測
4.2.1 基坑工程儀器監測項目應根據表4.2.1進行選擇。
4.2.2 當基坑周圍有地鐵、隧道或其它對位移(沉降)有特殊要求的建(構)築物及設施時,具體監測項目應與有關部門或單位協商確定。
4.3 巡 視 檢 查
4.3.1 基坑工程整個施工期內,每天均應有專人進行巡視檢查。
4.3.2 基坑工程巡視檢查應包括以下主要內容:1 支護結構(1)支護結構成型質量;(2) 冠梁、支撐、圍檁有無裂縫出現;(3)支撐、立柱有無較大變形;(4)止水帷幕有無開裂、滲漏;(5)牆後土體有無沉陷、裂縫及滑移;(6)基坑有無涌土、流砂、管涌。2 施工工況(1)開挖後暴露的土質情況與岩土勘察報告有無差異;(2)基坑開挖分段長度及分層厚度是否與設計要求一致,有無超長、超深開挖;(3)場地地表水、地下水排放狀況是否正常,基坑降水、回灌設施是否運轉正常;(4)基坑周圍地面堆載情況,有無超堆荷載。3 基坑周邊環境(1)地下管道有無破損、泄露情況;(2)周邊建(構)築物有無裂縫出現;(3)周邊道路(地面)有無裂縫、沉陷;(4)鄰近基坑及建(構)築物的施工情況。4 監測設施(1)基準點、測點完好狀況;(2)有無影響觀測工作的障礙物;(3)監測元件的完好及保護情況。5 根據設計要求或當地經驗確定的其他巡視檢查內容。
4.3.4 巡視檢查的檢查方法以目測為主,可輔以錘、釺、量尺、放大鏡等工器具以及攝像、攝影等設備進行。
4.3.5 巡視檢查應對自然條件、支護結構、施工工況、周邊環境、監測設施等的檢查情況進行詳細記錄。如發現異常,應及時通知委託方及相關單位。
4.3.6 巡視檢查記錄應及時整理,並與儀器監測數據綜合分析。
監 測 點 布 置
5.1 一 般 規 定
5.1.1 基坑工程監測點的布置應最大程度地反映監測對象的實際狀態及其變虧岩化趨勢,並應滿足監控要求。
5.1.2 基坑工程監測點的布置應不妨礙監測對象的正常工作,並盡量減少對施工作業的不利影響。
5.1.3 監測標志應穩固、明顯、結構合理,監測點的位置應避開障礙物,便於觀測。
5.1.4 在監測對象內力和變形變化大的代表性部位及周邊重點監護部位,監測點應適當加密。
5.1.5 應加強對監測點的保護,必要時應設置監測點的保護裝置或保護設施。
5.2 基 坑 及 支 護 結 構
5.2.1 基坑邊坡頂部的水平位移和豎向位移監測點應沿基坑周邊布置,基坑周邊中部、陽角處應布置監測點。監測點間距不宜大於20m,每邊監測點數目不應少於3個。監測點宜設置在基坑邊坡坡頂上。
5.2.2 圍護牆頂部的水平位移和豎向位移監測點應沿圍護牆的周邊布置,圍護牆周邊中部、陽角處應布置監測點。監測點間距不宜大於20m,每邊監測點數目不應少於3個。監測點宜設置在冠樑上。
5.2.3 深層水平位移監測孔宜布置在基坑邊坡、圍護牆周邊的中心處及代表性的部位,數量和間距視具體情況而定,但每邊至少應設1個監測孔。 當用測斜儀觀測深層水平位移時,設置在圍護牆內的測斜管深度不宜小於圍護牆的入土深度;設置在土體內的測斜管應保證有足夠的入土深度,保證管端嵌入到穩定的土體中。
5.2.4 圍護牆內力監測點應布置在受力、變形較大且有代表性的部位,監測點數量和橫向間距視具體情況而定,但每邊至少應設1處監測點。豎直方向監測點應布置在彎矩較大處,監測點間距宜為3~5m。
5.2.5 支撐內力監測點的布置應符合下列要求:1 監測點宜設置在支撐內力較大或在整個支撐系統中起關鍵作用的桿件上;2 每道支撐的內力監測點不應少於3個,各道支撐的監測點位置宜在豎向保持一致;3 鋼支撐的監測截面根據測試儀器宜布置在支撐長度的1/3部位或支撐的端頭。鋼筋混凝土支撐的監測截面宜布置在支撐長度的1/3部位;4 每個監測點截面內感測器的設置數量及布置應滿足不同感測器測試要求。
5.2.6 立柱的豎向位移監測點宜布置在基坑中部、多根支撐交匯處、施工棧橋下、地質條件復雜處的立柱上,監測點不宜少於立柱總根數的10%,逆作法施工的基坑不宜少於20%,且不應少於5根。
5.2.7 錨桿的拉力監測點應選擇在受力較大且有代表性的位置,基坑每邊跨中部位和地質條件復雜的區域宜布置監測點。每層錨桿的拉力監測點數量應為該層錨桿總數的1~3%,並不應少於3根。每層監測點在豎向上的位置宜保持一致。每根桿體上的測試點應設置在錨頭附近位置。
5.2.8 土釘的拉力監測點應沿基坑周邊布置,基坑周邊中部、陽角處宜布置監測點。監測點水平間距不宜大於30m,每層監測點數目不應少於3個。各層監測點在豎向上的位置宜保持一致。每根桿體上的測試點應設置在受力、變形有代表性的位置。
5.2.9 基坑底部隆起監測點應符合下列要求:1 監測點宜按縱向或橫向剖面布置,剖面應選擇在基坑的中央、距坑底邊約1/4坑底寬度處以及其他能反映變形特徵的位置。數量不應少於2個。縱向或橫向有多個監測剖面時,其間距宜為20~50m,下部宜加密。2 同一剖面上監測點橫向間距宜為10~20m,數量不宜少於3個。3 當按土層分布情況布設時,每層應至少布設1個測點,且布置在各層土的中部。
5.2.10 孔隙水壓力監測點宜布置在基坑受力、變形較大或有代表性的部位。監測點豎向布置宜在水壓力變化影響深度范圍內按土層分布情況布設,監測點豎向間距一般為2~5m,並不宜少於3個。
5.2.11 基坑內地下水位監測點的布置應符合下列要求: 1 當採用深井降水時,水位監測點宜布置在基坑中央和兩相鄰降水井的中間部位;當採用輕型井點、噴射井點降水時,水位監測點宜布置在基坑中央和周邊拐角處,監測點數量視具體情況確定; 2 水位監測管的埋置深度(管底標高)應在最低設計水位之下3~5m。對於需要降低承壓水水位的基坑工程,水位監測管埋置深度應滿足降水設計要求。 3 水位監測點應沿基坑周邊、被保護對象(如建築物、地下管線等)周邊或在兩者之間布置,監測點間距宜為20~50m。相鄰建(構)築物、重要的地下管線或管線密集處應布置水位監測點;如有止水帷幕,宜布置在止水帷幕的外側約2m處。4 回灌井點觀測井應設置在回灌井點與被保護對象之間。
5.3 周 邊 環 境
5.3.1 從基坑邊緣以外1~3倍開挖深度范圍內需要保護的建(構)築物、地下管 線等均應作為監控對象。必要時,尚應擴大監控范圍。
5.3.2 位於重要保護對象(如地鐵、上游引水、合流污水等)安全保護區范圍內的監測點的布置,尚應滿足相關部門的技術要求。
5.3.3 建(構)築物的豎向位移監測點布置應符合下列要求: 1 建(構)築物四角、沿外牆每10~15m處或每隔2~3根柱基上,且每邊不少於3個監測點;2 不同地基或基礎的分界處;3 建(構)築物不同結構的分界處;4 變形縫、抗震縫或嚴重開裂處的兩側;5 新、舊建築物或高、低建築物交接處的兩側;6 煙囪、水塔和大型儲倉罐等高聳構築物基礎軸線的對稱部位,每一構築物不得少於4點。
5.3.4 建(構)築物的水平位移監測點應布置在建築物的牆角、柱基及裂縫的兩端,每側牆體的監測點不應少於3處。
5.3.5 建(構)築物傾斜監測點應符合下列要求:1 監測點宜布置在建(構)築物角點、變形縫或抗震縫兩側的承重柱或牆上;2 監測點應沿主體頂部、底部對應布設,上、下監測點應布置在同一豎直線上;3 當採用鉛錘觀測法、激光鉛直儀觀測法時,應保證上、下測點之間具有一定的通視條件。
5.3.6 建(構)築物的裂縫監測點應選擇有代表性的裂縫進行布置,在基坑施工期間當發現新裂縫或原有裂縫有增大趨勢時,應及時增設監測點。每一條裂縫的測點至少設2組,裂縫的最寬處及裂縫末端宜設置測點。
5.3.7 地下管線監測點的布置應符合下列要求:1 應根據管線年份、類型、材料、尺寸及現狀等情況,確定監測點設置;2 監測點宜布置在管線的節點、轉角點和變形曲率較大的部位,監測點平面間距宜為15~25m,並宜延伸至基坑以外20m;3 上水、煤氣、暖氣等壓力管線宜設置直接監測點。直接監測點應設置在管線上,也可以利用閥門開關、抽氣孔以及檢查井等管線設備作為監測點;4 在無法埋設直接監測點的部位,可利用埋設套管法設置監測點,也可採用模擬式測點將監測點設置在靠近管線埋深部位的土體中。
5.3.8 基坑周邊地表豎向沉降監測點的布置范圍宜為基坑深度的1~3倍,監測剖面宜設在坑邊中部或其他有代表性的部位,並與坑邊垂直,監測剖面數量視具體情況確定。每個監測剖面上的監測點數量不宜少於5個。
5.3.9 土體分層豎向位移監測孔應布置在有代表性的部位,數量視具體情況確定,並形成監測剖面。同一監測孔的測點宜沿豎向布置在各層土內,數量與深度應根據具體情況確定,在厚度較大的土層中應適當加密。
監測方法及精度要求
6.1 一般規定
6.1.1 監測方法的選擇應根據基坑等級、精度要求、設計要求、場地條件、地區經驗和方法適用性等因素綜合確定,監測方法應合理易行。
6.1.2 變形測量點分為基準點、工作基點和變形監測點。其布設應符合下列要求:1 每個基坑工程至少應有3個穩固可靠的點作為基準點;2 工作基點應選在穩定的位置。在通視條件良好或觀測項目較少的情況下,可不設工作基點,在基準點上直接測定變形監測點;3 施工期間,應採用有效措施,確保基準點和工作基點的正常使用;4 監測期間,應定期檢查工作基點的穩定性。
6.1.3 監測儀器、設備和監測元件應符合下列要求:1 滿足觀測精度和量程的要求;2 具有良好的穩定性和可靠性;3 經過校準或標定,且校核記錄和標定資料齊全,並在規定的校準有效期內;
6.1.4 對同一監測項目,監測時宜符合下列要求:1 採用相同的觀測路線和觀測方法;2 使用同一監測儀器和設備;3 固定觀測人員;4 在基本相同的環境和條件下工作。
6.1.5 監測過程中應加強對監測儀器設備的維護保養、定期檢測以及監測元件的檢查;應加強對監測儀標的保護,防止損壞。
6.1.6 監測項目初始值應為事前至少連續觀測3次的穩定值的平均值。
6.1.7 除使用本規范規定的各種基坑工程監測方法外,亦可採用能達到本規范規定精度要求的其他方法。
6.2 水平位移監測
6.2.1 測定特定方向上的水平位移時可採用視准線法、小角度法、投點法等;測定監測點任意方向的水平位移時可視監測點的分布情況,採用前方交會法、自由設站法、極坐標法等;當基準點距基坑較遠時,可採用GPS測量法或三角、三邊、邊角測量與基準線法相結合的綜合測量方法。
6.2.2 水平位移監測基準點應埋設在基坑開挖深度3倍范圍以外不受施工影響的穩定區域,或利用已有穩定的施工控制點,不應埋設在低窪積水、濕陷、凍脹、脹縮等影響范圍內;基準點的埋設應按有關測量規范、規程執行。宜設置有強制對中的觀測墩;採用精密的光學對中裝置,對中誤差不宜大於0.5mm。
6.2.3 基坑圍護牆(坡)頂水平位移監測精度應根據圍護牆(坡)頂水平位移報警值按表6.2.3確定。
6.2.4 地下管線的水平位移監測精度宜不低於1.5mm。
6.2.5 其他基坑周邊環境(如地下設施、道路等)的水平位移監測精度應符合相關規范、規程等的規定。
6.3 豎向位移監測
6.3.1 豎向位移監測可採用幾何水準或液體靜力水準等方法。
6.3.2 坑底隆起(回彈)宜通過設置回彈監測標,採用幾何水準並配合傳遞高程的輔助設備進行監測,傳遞高程的金屬桿或鋼尺等應進行溫度、尺長和拉力等項修正。
6.3.3 基坑圍護牆(坡)頂、牆後地表與立柱的豎向位移監測精度應根據豎向位移報警值按表6.3.3確定。
6.3.4 地下管線的豎向位移監測精度宜不低於0.5mm。
6.3.5 其他基坑周邊環境(如地下設施、道路等)的豎向位移監測精度應符合相關規范、規程的規定。
6.3.6 坑底隆起(回彈)監測精度不宜低於1mm。
6.3.7 各等級幾何水準法觀測時的技術要求應符合表6.3.7的要求。
6.3.8 水準基準點宜均勻埋設,數量不應少於3點,埋設位置和方法要求與6.2.2相同。
6.3.9 各監測點與水準基準點或工作基點應組成閉合環路或附合水準路線。
6.4深層水平位移監測
6.4.1 圍護牆體或坑周土體的深層水平位移的監測宜採用在牆體或土體中預埋測斜管、通過測斜儀觀測各深度處水平位移的方法。
6.4.2 測斜儀的系統精度不宜低於0.25mm/m,解析度不宜低於0.02mm/500mm
6.4.3 測斜管應在基坑開挖1周前埋設,埋設時應符合下列要求:1 埋設前應檢查測斜管質量,測斜管連接時應保證上、下管段的導槽相互對准順暢,接頭處應密封處理,並注意保證管口的封蓋;2 測斜管長度應與圍護牆深度一致或不小於所監測土層的深度;當以下部管端作為位移基準點時,應保證測斜管進入穩定土層2~3m;測斜管與鑽孔之間孔隙應填充密實;3 埋設時測斜管應保持豎直無扭轉,其中一組導槽方向應與所需測量的方向一致。
6.4.4 測斜儀應下入測斜管底5~10min,待探頭接近管內溫度後再量測,每個監測方向均應進行正、反兩次量測。
6.4.5 當以上部管口作為深層水平位移的起算點時,每次監測均應測定管口坐標的變化並修正。
6.5 傾斜監測
6.5.1 建築物傾斜監測應測定監測對象頂部相對於底部的水平位移與高差,分別記錄並計算監測對象的傾斜度、傾斜方向和傾斜速率。
6.5.2 應根據不同的現場觀測條件和要求,選用投點法、水平角法、前方交會法、正垂線法、差異沉降法等。
6.5.3 建築物傾斜監測精度應符合《工程測量規范》(GB50026)及《建築變形測量規程》(JGJ/T8)的有關規定。
6.6 裂縫監測
6.6.1 裂縫監測應包括裂縫的位置、走向、長度、寬度及變化程度,需要時還包括深度。裂縫監測數量根據需要確定,主要或變化較大的裂縫應進行監測。
6.6.2 裂縫監測可採用以下方法:1 對裂縫寬度監測,可在裂縫兩側貼石膏餅、劃平行線或貼埋金屬標志等,採用千分尺或游標卡尺等直接量測的方法;也可採用裂縫計、粘貼安裝千分表法、攝影量測等方法。2 對裂縫深度量測,當裂縫深度較小時宜採用鑿出法和單面接觸超聲波法監測;深度較大裂縫宜採用超聲波法監測。
6.6.3 應在基坑開挖前記錄監測對象已有裂縫的分布位置和數量,測定其走向、長度、寬度和深度等情況,標志應具有可供量測的明晰端面或中心。
6.6.4 裂縫寬度監測精度不宜低於0.1mm,長度和深度監測精度不宜低於1mm。
6.7 支護結構內力監測
6.7.1 基坑開挖過程中支護結構內力變化可通過在結構內部或表面安裝應變計或應力計進行量測。
6.7.2 對於鋼筋混凝土支撐,宜採用鋼筋應力計(鋼筋計)或混凝土應變計進行量測;對於鋼結構支撐,宜採用軸力計進行量測。
6.7.3 圍護牆、樁及圍檁等內力宜在圍護牆、樁鋼筋製作時,在主筋上焊接鋼筋應力計的預埋方法進行量測。
6.7.4 支護結構內力監測值應考慮溫度變化的影響,對鋼筋混凝土支撐尚應考慮混凝土收縮、徐變以及裂縫開展的影響。
6.7.5 應力計或應變計的量程宜為最大設計值的1.2倍,解析度不宜低於0.2%F·S,精度不宜低於0.5%F·S。
6.7.6 圍護牆、樁及圍檁等的內力監測元件宜在相應工序施工時埋設並在開挖前取得穩定初始值。
6.8 土壓力監測
6.8.1 土壓力宜採用土壓力計量測。
6.8.2 土壓力計的量程應滿足被測壓力的要求,其上限可取最大設計壓力的1.2倍,精度不宜低於0.5%F·S,解析度不宜低於0.2%F·S。
6.8.3 土壓力計埋設可採用埋入式或邊界式(接觸式)。埋設時應符合下列要求:1 受力面與所需監測的壓力方向垂直並緊貼被監測對象;2 埋設過程中應有土壓力膜保護措施;3 採用鑽孔法埋設時,回填應均勻密實,且回填材料宜與周圍岩土體一致。4 做好完整的埋設記錄。
6.8.4 土壓力計埋設以後應立即進行檢查測試,基坑開挖前至少經過1周時間的監測並取得穩定初始值。
6.9 孔隙水壓力監測
6.9.1 孔隙水壓力宜通過埋設鋼弦式、應變式等孔隙水壓力計,採用頻率計或應變計量測。
6.9.2 孔隙水壓力計應滿足以下要求:量程應滿足被測壓力范圍的要求,可取靜水壓力與超孔隙水壓力之和的1.2倍;精度不宜低於0.5%F·S,解析度不宜低於0.2%F·S。
6.9.3 孔隙水壓力計埋設可採用壓入法、鑽孔法等。
6.9.4 孔隙水壓力計應在事前2~3周埋設,埋設前應符合下列要求:1 孔隙水壓力計應浸泡飽和,排除透水石中的氣泡;2 檢查率定資料,記錄探頭編號,測讀初始讀數。
6.9.5 採用鑽孔法埋設孔隙水壓力計時,鑽孔直徑宜為110~130mm,不宜使用泥漿護壁成孔,鑽孔應圓直、干凈;封口材料宜採用直徑10~20mm的乾燥膨潤土球
6.9.6 孔隙水壓力計埋設後應測量初始值,且宜逐日量測1周以上並取得穩定初始值。
6.9.7 應在孔隙水壓力監測的同時測量孔隙水壓力計埋設位置附近的地下水位。
6.10 地下水位監測
6.10.1 地下水位監測宜采通過孔內設置水位管,採用水位計等方法進行測量。
6.10.2 地下水位監測精度不宜低於10mm。
6.10.3 檢驗降水效果的水位觀測井宜布置在降水區內,採用輕型井點管降水時可布置在總管的兩側,採用深井降水時應布置在兩孔深井之間,水位孔深度宜在最低設計水位下2~3m。
6.10.4 潛水水位管應在基坑施工前埋設,濾管長度應滿足測量要求;承壓水位監測時被測含水層與其他含水層之間應採取有效的隔水措施。
6.10.5 水位管埋設後,應逐日連續觀測水位並取得穩定初始值。
6.11 錨桿拉力監測
6.11.1 錨桿拉力量測宜採用專用的錨桿測力計,鋼筋錨桿可採用鋼筋應力計或應變計,當使用鋼筋束時應分別監測每根鋼筋的受力。
6.11.2 錨桿軸力計、鋼筋應力計和應變計的量程宜為設計最大拉力值的1.2倍,量測精度不宜低於0.5%F·S,解析度不宜低於0.2%F·S。
6.11.3 應力計或應變計應在錨桿鎖定前獲得穩定初始值。
6.12 坑外土體分層豎向位移監測
6.12.1 坑外土體分層豎向位移可通過埋設分層沉降磁環或深層沉降標,採用分層沉降儀結合水準測量方法進行量測。
6.12.2 分層豎向位移標應在事前埋設。沉降磁環可通過鑽孔和分層沉降管進行定位埋設。
6.12.3 土體分層豎向位移的初始值應在分層豎向位移標埋設穩定後進行,穩定時間不應少於1周並獲得穩定的初始值;監測精度不宜低於1mm。
6.12.4 每次測量應重復進行2次,2次誤差值不大於1mm。
6.12.5 採用分層沉降儀法監測時,每次監測應測定管口高程,根據管口高程換算出測管內各監測點的高程。 7.0.1 基坑工程監測頻率應以能系統反映監測對象所測項目的重要變化過程,而又不遺漏其變化時刻為原則。
7.0.2 基坑工程監測工作應貫穿於基坑工程和地下工程施工全過程。監測工作一般應從基坑工程施工前開始,直至地下工程完成為止。對有特殊要求的周邊環境的監測應根據需要延續至變形趨於穩定後才能結束。
7.0.3 監測項目的監測頻率應考慮基坑工程等級、基坑及地下工程的不同施工階段以及周邊環境、自然條件的變化。當監測值相對穩定時,可適當降低監測頻率。對於應測項目,在無數據異常和事故徵兆的情況下,開挖後儀器監測頻率的確定可參照表7.0.3。
7.0.4 當出現下列情況之一時,應加強監測,提高監測頻率,並及時向委託方及相關單位報告監測結果:1.監測數據達到報警值;2.監測數據變化量較大或者速率加快;3.存在勘察中未發現的不良地質條件;4.超深、超長開挖或未及時加撐等未按設計施工;5.基坑及周邊大量積水、長時間連續降雨、市政管道出現泄漏;6.基坑附近地面荷載突然增大或超過設計限值;7.支護結構出現開裂;8.周邊地面出現突然較大沉降或嚴重開裂;9.鄰近的建(構)築物出現突然較大沉降、不均勻沉降或嚴重開裂;10.基坑底部、坡體或支護結構出現管涌、滲漏或流砂等現象;11.基坑工程發生事故後重新組織施工;12.出現其他影響基坑及周邊環境安全的異常情況。
7.0.5 當有危險事故徵兆時,應實時跟蹤監測。 8.0.1 基坑工程監測報警值應符合基坑工程設計的限值、地下主體結構設計要求以及監測對象的控制要求。基坑工程監測報警值由基坑工程設計方確定。
8.0.2 基坑工程監測報警值應以監測項目的累計變化量和變化速率值兩個值控制。
8.0.3 因圍護牆施工、基坑開挖以及降水引起的基坑內外地層位移應按下列條件控制:1 不得導致基坑的失穩;2 不得影響地下結構的尺寸、形狀和地下工程的正常施工;3 對周邊已有建(構)築物引起的變形不得超過相關技術規范的要求;4 不得影響周邊道路、地下管線等正常使用;5 滿足特殊環境的技術要求。
8.0.4 基坑及支護結構監測報警值應根據監測項目、支護結構的特點和基坑等級確定,可參考表8.0.4。
註:1.h — 基坑設計開挖深度;f — 設計極限值。 2.累計值取絕對值和相對基坑深度(h)控制值兩者的小值。 3.當監測項目的變化速率連續3天超過報警值的50%,應報警。
8.0.5 周邊環境監測報警值的限值應根據主管部門的要求確定,如無具體規定,可參考表8.0.5確定。
8.0.6 周邊建(構)築物報警值應結合建(構)築物裂縫觀測確定,並應考慮建(構)築物原有變形與基坑開挖造成的附加變形的疊加。
8.0.7 當出現下列情況之一時,必須立即報警;若情況比較嚴重,應立即停止施工,並對基坑支護結構和周邊的保護對象採取應急措施。1 當監測數據達到報警值;2 基坑支護結構或周邊土體的位移出現異常情況或基坑出現滲漏、流砂、管涌、隆起或陷落等;3 基坑支護結構的支撐或錨桿體系出現過大變形、壓屈、斷裂、鬆弛或拔出的跡象;4 周邊建(構)築物的結構部分、周邊地面出現可能發展的變形裂縫或較嚴重的突發裂縫;5 根據當地工程經驗判斷,出現其他必須報警的情況。 9.0.1 監測分析人員應具有岩土工程與結構工程的綜合知識,具有設計、施工、測量等工程實踐經驗,具有較高的綜合分析能力,做到正確判斷、准確表達,及時提供高質量的綜合分析報告。
9.0.2 現場測試人員應對監測數據的真實性負責,監測分析人員應對監測報告的可靠性負責,監測單位應對整個項目監測質量負責。監測記錄和監測技術成果均應有負責人簽字,監測技術成果應加蓋成果章。
9.0.3 現場的監測資料應符合下列要求:1 使用正式的監測記錄表格;2 監測記錄應有相應的工況描述;3 監測數據應及時整理;4 對監測數據的變化及發展情況應及時分析和評述。
9.0.4 外業觀測值和記事項目,必須在現場直接記錄於觀測記錄表中。任何原始記錄不得塗改、偽造和轉抄,並有測試、記錄人員簽字。
9.0.5 觀測數據出現異常,應及時分析原因,必要時進行重測
9.0.6 監測項目數據分析時,應結合其他相關項目的監測數據和自然環境、施工工況等情況以及以往數據進行,考量其發展趨勢,並做出預報。
9.0.7 技術成果應包括當日報表、階段性報告、總結報告。技術成果提供內容應真實、准確、完整,並應用文件闡述與繪畫宜用變化曲線或圖形相結合的形式表達。技術成果應按時報送。
9.0.8 監測數據的處理與信息反饋宜採用專業軟體,專業軟體的功能好參數應符合本規范的有關規定,並宜具備數據採集、處理、分析、查詢好管理一體化以及監測成果可視化的功能。
9.0.9 基坑工程監測的觀測記錄、計算資料好技術成果應進行組卷、歸檔。
9.0.10 當日報表應包括下列內容:1 當日的天氣情況和施工現場的工況;2 儀器監測項目各監測點的本次測試值、單次變化值、變化速率以及累計值等,必要時繪制有關曲線圖;3 巡視檢查的記錄;4 對監測項目應有正常或異常的判斷性結論;5 對達到或超過監測報警值的監測點應有報警標示,並有原因分析及建議;6 對巡視檢查發現的異常情況應有詳細描述,危險情況應有報警標示,並有原因分析及建議;7 其他相關說明。當日報表宜採用本規范附錄A ~附錄G的樣式。
9.0.11 階段性監測報告應包括下列內容:1 該監測期相應的工程、氣象及周邊環境概況;2 該監測期的監測項目及測點的布置圖;3 各項監測數據的整理、統計及監測成果的過程曲線;4 各監測項目監測值的變化分析、評價及發展預測;5 相關的設計和施工建議。
9.0.12 基坑工程監測總結報告的內容應包括:1 工程概況;2 監測依據;3 監測項目;4 測點布置;5 監測設備和監測方法;6 監測頻率;7 監測報警值;8 各監測項目全過程的發展變化分析及整體評述;9 監測工作結論與建議。
9.0.13 總結報告應標明工程名稱、監測單位、整個監測工作的起止日期,並應有監測單位章及項目負責人、單位技術負責人、企業行政負責人簽字。
❺ 城市建築深基坑變形監測
城市建築深基坑變形監測是非常重要的,監測的數據只有符合標准才能做到最好,每個細節的處理都很關鍵。中達咨詢就城市建築深基坑變形監測和大家說明一下。
1城市建築區深基坑變形
基坑作為城市建築群的基礎工程,建築要維持長久的穩定,基坑的穩定是基礎。基坑的建設需要滿足強度和變形兩個要求。首先得具備一定的強度來支撐上層建築,其次由於向下施工的條件,深基坑的變形也是施工方需要考量的重點問題,如何把這種變形控制在一定的合理范圍內,就成了城市建築區深基坑研究的一個重點問題[1]。首先具體闡述城市建築區深基坑的變形影響因素。
1.1因向下挖掘引起的坑底隆起
土地原本處於一種塑性平衡中,對上層土地的挖掘,會使下層土地因為卸荷作用而產生塑性回彈變形,且深基坑底部受天氣濕度等影響會因為基底土體吸水發生一定量的膨脹,形成變形,同時圍護牆的底部也會產生不可逆的變形,引起深基坑坑底配鎮穗隆起現象。
1.2圍護牆的擠壓位移
圍護牆的擠壓位移是指由於在深基坑挖掘過程中因為對基坑土地原始應力的改變而引起的一系列應力擠壓所導致的圍護牆受到擠壓所形成不可逆性位移的現象。這種現象施工方要做到嚴格監控,把圍護牆的擠壓位移控制在一定的合理的范圍內,以免對工程造成影響。土地有一個應力的平衡點,所以能保持靜止。在施工方開始挖掘深基坑的時候,水平方向挖掘下去之後,破壞了四周垂直方向的土地應力平衡,形成了深基坑牆外側土地的主動土壓力,同時,在挖掘過程中,在旅運深基坑內側底部對牆面形成了被動土壓力。這些壓力導致深基坑圍護牆在挖掘前期就形成了不可逆的位移變形。這種變形導致了,設計的圍護牆牆體和實際挖掘的牆體在前期就產生了一系列的數據差。牆外側的土地主動壓力導致了牆體會在坑基內部水平方向發生一定的位移,同時在深基坑底部,由於土地隆起形成的被動壓力,導致了圍護牆牆體向上發生一定量的位移。這些位移就是圍護牆受到擠壓產生的定向位移。
2深基坑變形的檢測
深基坑的變形分為兩個方向,水平方向發生的位移和豎直方向發生的沉降變形,不同的變形要用不同的方式進行合理的檢測,達到把所有的變形控制在科學合理可接受的范圍內。
2.1水平方向的檢測
把深基坑同一水平方位標記為一個個的點,用經緯儀去檢測這條直線上面的每個點的變形量,使所有的點保持在一條直線范圍內,中間出現的偏差量就是由深基坑水平方向變形所引起的。因為深基坑的變形是自然存在且不可避免的變形,所以這些水平方向的檢測量會有一個合理且不影響上層建築建設的偏差量,控制深基坑水平變形在這一范圍內,達到合格的建設要求。
2.2豎直方向的沉降變形檢測
因為深基坑豎直方向沉降變形對精度的要求不一致,可以根據具體工程具體檢測方法的辦法,做到合理的檢測。當檢測的精度要求高時,一般採取閉合水準測量的檢測方式;當精度要求較低時,採取在一個站點對多個監測點進行檢測的方式。
3檢測誤差
深基坑的檢測,一直存在著較大的誤差,這些誤差是由於檢測模式和實際情況的差別所形成的。國內深基坑檢測的方式,採取的是靜態檢測的方式。靜態檢測,培卜就是對深基坑進行短時間、短次數靜態數據的檢測,這種檢測往往檢測的只是一瞬間的實時數據,只跟這一刻的深基坑現狀具有良好的匹配。但是深基坑時時刻刻都受著各種擠壓力,這些力是實時存在的且存在變化的,這些變化產生了檢測誤差,用靜態的檢測方法去檢測動態的深基坑變化,這些誤差只能固定在一個固定的范圍之內,無法做到精確檢測。同時,這種不準確的檢測方式隨著中國基建工程和經濟如火如荼的發展,必然會被更准確的檢測方式所淘汰。
4檢測注意點
深基坑檢測在現有的檢測條件下存在一定的固定誤差,這些誤差是不可避免的,是由動態的深基坑變化和靜態的檢測方式之間的差異所造成的。但是,在現有的條件下,應該做好每一個細節,把檢測的誤差爭取降到最低。首先,在監測點的布控時候,檢測人員一定要對基坑的地質等一系列做到詳細了解,再結合理論知識,用理論結合實際的方式爭取把失誤降到最低。其次,要能保證合理的檢測頻率,面對著動態的深基坑變化,一定要對檢測頻率做到合理布控,以達到把檢測中出現的失誤降到最低。最後,要對監測數據做到合理的測量和處理。對檢測數據進行仔細的收集處理,最後和理論數據進行對比,藉助相關數據做到科學的檢測。
5檢測方式的改良
深基坑檢測方式的改良,首先要做的就是將檢測和實際情況進行動態的匹配,讓檢測做到實時。目前,國內外興起的信息化檢測下的動態設計及施工的新技術,可以完美的解決這一檢測動靜不匹配的問題。在全面信息化的時代,由互聯網帶動的產業發展已經成了一種必然趨勢。相對的,互聯網大數據的建設,讓我們可以動態的模擬出一切的深基坑檢測畫面和結果。運用互聯網檢測技術,對深基坑變形分階段進行實時的監控,監控出每一個階段的變形結果,運用互聯網大數據對檢測結果進行全方位推測,預測出未來幾個階段水平位移、沉降變形、水土壓力、結構內力等的具體數據,對深基坑進行實時監控,用未來實際檢測數據和互聯網大數據分析數據進行對比,達到精準監控深基坑變形檢測的目的。將動態的方法運用到動態的檢測中,實施信息化全方面的監控與管理,已經成為了深基坑監測的一種必然趨勢。隨著中國大力發展經濟建設和基礎建設,這種動態的檢測方式一定會成為一種中國深基坑檢測研究的必然側重點。
6結束語
在中國基礎建設如火如荼的今天,深基坑建設作為基建的基礎顯得尤為重要,深基坑變形問題也同時成為基建問題中的一個重點及難點問題,如何搞好深基坑的建設及做好深基坑後期的檢測問題,應該是施工方重點關注研究的問題。隨著互聯網快速的發展,何如把這中動態的工程利用互聯網做到動態監測,實現精確檢測,是施工方應該去思考並全力去解決的問題。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
❻ 基坑監測報警系統解決什麼樣的問題
一、監控報警值的確定原則
1) 滿足設計計算的要求,不能大於設計值;
2) 滿足監測對象的安全要求,達到保護的目的;
3) 對於相同條件的保護對象,應該結合周圍環境的要求和具體的施工情況綜合確定;
4) 滿足現行的有關規范、規程的要求;
5) 在保證安全的前提下,綜合考慮工程質量和經濟等因素,減少不必要的資金投入。
總結
監控報警值不僅是設計計算的重要基礎,同時也是確定合理施工流程、保護周圍環境安全的主要依據。監測項目的監控報警值應根據基坑自身的特點、監測目的、周圍環境的要求,結合本地區工程經驗並經過有關部門協商綜合確定。
基坑監測項目的監控報警值的確定,是基坑監測工作中相當重要的一個環節。准確有效的監控報警值,有助於及時地發現基坑中出現的問題,便於施工單位採取處理措施,將基坑事故消防在萌芽階段,確保人民生命財產安全。
❼ 談建築工程中基坑工程的監測方法
談建築工程中基坑工程的監測方法
周圍環境監測主要包括:鄰近構築物、地下管網、道路等設施變形的監測,淺析建築工程中基坑工程的監測方法?
雖然人們在基坑開挖和基坑支護結構設計過程中,為了保證基坑的安全,通常都會仿慎採用了一系列的技術措施,但依然有很多基坑事故發生,事故發生主要表現為基坑大面積滑坡、支護體系崩潰、水平位移過大、支護結構過分傾斜、基坑周邊土體變形過大、支護結構和被支護土體達到破壞狀態、基坑底回彈或隆起過大、鄰近建築物傾斜或開裂甚至倒塌等等。當基坑工程事故發生,就會給國家和人民的生命財產安全帶來巨大的損失,而且還會產生不良的社會影響。
1 監測目的
在深基坑開挖施工過程中,對建築物、土體、道路、構築物、地下管線等周圍環境和支護結構的位移、應力、沉降、傾斜、開裂和對備肢敬地下水位的動態變化、土層孔隙水壓力變化等,藉助儀器設備或其他一些手段進行綜合監測,就是深基坑開挖監測。
在開挖前期,對土體變位動態等各種行為表現進行監測,通過大量岩土信息的提取,及時比較勘察出監測結果和預期設計的性狀差別,分析評價原設計成果,對現行施工方案的合理性進行判斷,有效預測下階段施工中可能出現的新情況,此時可以藉助修正岩土力學參數和反分析方法計算來完成預測。為了能為後期開挖方案和步驟提出有用的建議,就需要合理和優化組織施工提供可靠信息,從而能夠及時預報施工過程中可能會出現的險情;當有異常情況發生時,應及時採取一定的工程措施,防止問題事故的發生,以確保工程安全。
2 監測內容
2.1 周圍環境監測
周圍環境監測主要包括:鄰近構築物、地下管網、道路等設施變形的監測,鄰近建築物的傾斜、裂縫和沉降發生時間、過程的監測,表層和深層土體水平位移、沉降的監測,坑底隆起監測,樁側土壓力測試,土層孔隙水壓力測試,地下水位監測。具體監測項目的選定需要綜合考慮工程地質和水飢櫻文地質條件、周圍建築物及地下管線、施工連受和基坑工程安全等級情況。
2.2 支護體系監測
支護體系監測主要包括:支護結構沉降監測,支護結構傾斜監測,支護體系應力監測,支護結構頂部水平位移監測,支護體系受力監測,支護體系完整性及強度監測。
3 監測儀器
通常情況下,基坑的監測是需要藉助一些設備的,一般使用的儀器主要包含以下幾種:
3.1 測斜儀:該儀器主要用在支護結構、土體水平位移的觀測中。
3.2 水準儀和經緯儀:該設備主要用在測量地下管線、支護結構、周圍環境等方面的沉降和變位。
3.3 深層沉降標:用於量測支護結構後土體位移的變化,以判斷支護結構的穩定狀態。
3.4 土壓力計:用於量測支護結構後土體的壓力狀態是主動、被動還是靜止的,或測量支護結構後土體的壓力的大小、變化情況等,來檢驗設計中的判斷支護結構的位移情況和計算精確度。
3.5 孔隙水壓力計:為了能夠較為准確的判斷坑外土體的`移動,可用該儀器來觀測支護結構後孔隙水壓力的變化情況。
3.6 水位計:為了檢驗降水效果就可以採用該儀器來量測支護結構後地下水位的變化情況。
3.7 鋼筋應力計:為了判斷支撐結構是否穩定,使用該設備來量測支撐結構的彎矩、軸力等。
3.8 溫度計:溫度對基坑有較大影響,為了能計算由溫度變化引起的應力,則需要將溫度計和鋼筋應力計一起埋設在鋼筋混凝土支撐中。
3.9 混凝土應變計:要計算相應支撐斷面內的軸力,則需要採用混凝土應變計以測定支撐混凝土結構的應變。
3.10 低應變動測儀和超聲波無損檢測儀:用來檢測支護結構的完整性和強度。
無論是哪種類型的監測儀器,在埋設前,都應從外觀檢驗、防水性檢驗、壓力率定和溫度率定等幾方面進行檢驗和率定。應變計、應力計、孔隙水壓力計、土壓力盒等各類感測器在埋設安裝之前都應進行重復標定;水準儀、經緯儀、測斜儀等除須滿足設計要求外,應每年由國家法定計量單位進行檢驗、校正,並出具合格證。論文聯盟http://www.LWlM.cOm
由於監測儀器設備的工作環境大多在室外甚至地下,而且埋設好的元件不能置換,因此,選用時還應考慮其可靠性、堅固性、經濟性以及測量原理和方法、精度和量程等方面的因素。
4 監測方法
施工前,應對周圍建築物和有關設施的現狀、裂縫開展情況等進行調查,並作詳細記錄;也可拍照、攝像作為施工前的檔案資料。對於同一工程,監測工作應固定觀測人員和儀器,採用相同的觀測方法和觀測線路,在基本相同的情況下施測。
基準點應在施工前埋設,經觀測確定其已穩定時方可投入使用;基準點一般不少於2個,並設在施工影響范圍外,監測期間應定期聯測以檢驗其穩定性。為了能有效確保其在整個施工期間都能夠正常使用,在整個施工期內都應該採取一定的保護措施。
在施工之前,應進行不少於兩次的初始觀測。而在開挖期間則每天一般觀測一次,在觀測值相對穩定後則可適當降低觀測頻率。而當出現報警指標、觀測值變化速率加快或者出現危險事故徵兆時,則應增加觀測次數。在布置觀測點時,要充分考慮深埋測點,其不能影響結構的正常受力的同時也不能削弱結構的變形剛度和強度,通常情況下為了便於監測工作開始測量元件已進入穩定的工作狀態時,深埋測點的埋設的提前量一般不少於30d。
5 支護結構頂部水平位移監測
觀測點沿基坑周邊布置,一般埋設於支護結構圈樑頂部,支撐頂部宜適當選擇布點,觀測點精度為2mm。在監測過程中,測點的布置和觀測間隔需要遵循一些原則,通常原則如下:
5.1 一般當間隔達到10~15m時則可布設一個監測點;而在距周圍建築物較近處、基坑轉折處等重要位置都應該適當加密布點。
5.2 在基坑開挖之初,只需每隔2~3d監測一次,然而隨著開挖過程的不斷加深,應適當增加觀測次數,最好為1d一次觀測,在發生較大位移時,則需要每天1~2次的觀測。考慮到基坑開挖時,施工現場狹窄,測點常被阻擋等實際情況,在有條件的場地,可以採用視准線法比較方便。
6 支護結構傾斜監測
在監測支護結構傾斜時,通常採用測斜儀進行監測。由於支護結構受力特點、周圍環境等因素的影響,需要在關鍵地方鑽孔布設測斜管,並採用高精度測斜儀進行監測。根據支護結構在各開挖施工階段傾斜變化情況,應該及時提供支護結構沿深度方向水平位移隨時間變化的曲線,測量精度為1mm。
設置在支護結構的測斜點間距一般為20~30m,每邊不宜少於2個。測斜管埋置深度一般是基坑的開挖深度的2倍,當埋設在支護牆內時,則應該同支護牆深度相同,當埋設在土內時,宜大於支護牆埋深5~10m。埋入的測斜管應保持豎直,並使一對定向槽垂直於基坑邊。在測斜管放置於支護結構後,一般用中細砂回填支護結構與孔壁之問的孔隙,最好用膨脹土、水泥、水按1:1:6.25的比例混合回填。目前。工程中使用最多的是滑移式測斜儀,其一般測點間距是探頭本身的長度相同,因而通常認為沿整個測斜孔量測結果是連續的,或者在基坑開挖過程中,及時在支護結構側面布設測點並採用光學經緯儀觀測支護結構傾斜。
;❽ 深基坑變形監測主要用到哪些設備
滲壓計和應變計是峟思工程儀器儀表中的兩個重要測量工具,它們在工程領域中具有廣泛的應用,並且在用戶中帶來了很多正面影響。
首先,滲壓計和應變計在土木工程、水利工程、地質勘探等領域中起到了重要作用。滲壓計可以測量土壤和岩石中的水壓、水位、滲透性等參數,為地下水流動、地下結構的穩定性分析和工程設計提供了准確的數據。應變計可以測量材料和結構的應變變化,用於評估結構的變形、應力狀態和穩定性,對於土木工程中的結構安全性評估、結構監測和質量控制具有重要意義。
其次,滲壓計和應變計的高精度測量能力為工程設計和施工過程中的質量控制提供了有效的手段。通過使用高精度的滲壓計和應變計,可以及時發現工程中的異常變化和問題,採取相應的措施進行調整和改進,確保工程質量達到預期的要求。例如,在地下隧道施工中,滲壓計和應變計可以實時監測地下水壓力和毀改圍岩應變,為隧道結構的穩定性評估和施工方案的調整提供了可靠的數據支持,從而保障了隧道工程的安全和順利進行。
此外,滲壓計和應變計的數據可以通過現代化的數據傳輸和處理技術實現實時監測和雲端存儲,方便用戶隨時獲取測量數據,並進行數據分析和報告生成。這有助於用戶及時了解工程狀態,發現問題並採取措施,提高工程質量和安全。
綜上所述,峟思工程儀器儀表中的滲壓計和應變計具有高精度的測量能力,為工程質量控制和安全管理提供了有效的工具,對於工程項目的正纖則判常進行和工程質量的提升具有積極盯段的影響。